Jump detection with wavelets for high-frequency financial time series

نویسندگان

  • YI XUE
  • RAMAZAN GENÇAY
  • STEPHEN FAGAN
چکیده

This paper introduces a new nonparametric test to identify jump arrival times in high frequency financial time series data. The asymptotic distribution of the test is derived. We demonstrate that the test is robust for different specifications of price processes and the presence of the microstructure noise. A Monte Carlo simulation is conducted which shows that the test has good size and power. Further, we examine the multi-scale jump dynamics in US equity markets. The main findings are as follows. First, the jump dynamics of equities are sensitive to data sampling frequency with significant underestimation of jump intensities at lower frequencies. Second, although arrival densities of positive jumps and negative jumps are symmetric across different time scales, the magnitude of jumps is distributed asymmetrically at high frequencies. Third, only 20% of jumps occur in the trading session from 9:30AM to 4:00 PM, suggesting that illiquidity during after-hours trading is a strong determinant of jumps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets

This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation....

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Heterogeneous autoregressive model with structural break using nearest neighbor truncation volatility estimators for DAX

High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhanc...

متن کامل

Torben G . Andersen , Tim Bollerslev and Francis X . Diebold “ Some Like it Smooth , and Some Like it Rough : Untangling Continuous and Jump Components in Measuring , Modeling , and Forecasting Asset Return Volatility

A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from highfrequency returns coupled with relatively simple reduced-form time series modeling procedures. Building on recent theoretical results from Barndorff-Nielsen and Shephard (2003c,d) for related bipower variation meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014